Perceptually significant features of granular processing

Nathan Wolek Stetson University DeLand, FL, USA

I. Background

Granular processing

- Variation on granular synthesis
- Grains short, windowed samples of audio recordings, 10 to 100 ms
- Allows for range of effects
 - Time expansion/contraction
 - Pitch manipulation
 - Unrelated sounds ("clouds")

Perceptual features

- "What are the possible restrictive limits of human psychophysiology?" : Xenakis
 - minimum duration
 - Fletcher-Munson curves
 - minimum intensity
 - minimum pitch distinctions
 - 340,000 possible different grains

Perceptual features

- "Each of the control variables cited previously have a psychoacoustic correlate that may be more suggestive as a basis for compositional organization..." : Truax
 - duration \rightarrow density
 - delay \rightarrow secondary density

Perceptual features

- "It takes a certain amount of training to learn how operations in the micro domain translate to acoustic perceptions on higher levels." : Roads

 duration connected to spectrum
 - proposes high-level, descriptive controls

Software design thesis

- ideally controls would match perception
- potential to ease the learning curve
- Q: How have others handled issue of control in the past?
 - survey of existing software/documentation
 - focus on key control parameters

Multiple grains

Grain duration (ms)

grain length or grain size (ms)

Granular period (ms)

inverse = density or rate (gps)

Grain delay (ms)

Parameters of interest 15 programs surveyed

- Grain duration
 - direct (9) or indirect (4)
- Voice organization
 - density (8), delay (4) or period (1)
- Randomization
 - min/max (6), mean/bw (3) or combo (1)

II. Experimental Methods and Procedures

Multi-dimensional Scaling

- Participants rate similarity of each unique pairing
- Similarity ratings used as basis for graphic representation of relationships
- Distance relates to amount of similarity
- Used in studies of timbre
 - (Grey 1977; Wessel 1979; Kendall and Carterette 1991; Iverson and Krumhansl 1993)

Experiment Design

Stimuli generated using two sound sources

- both processed using same set of 9 parameter settings, producing 18 unique stimuli total
- 18 stimuli contain 171 unique pairs
- Practice session used to prepare participants
- Focus on parameters of grain duration, voice organization and randomization

Pre-qualification

- Potential participants screened based on prior experience
 - All subjects reported at least four combined years of experience within the areas of music and audio technologies
- Secondary inquiry related to experience with electroacoustic music
 - no significant differences found
 - responses averaged for MDS

Experiment 1

- 20 participants
- 9 settings
- No randomization
- 2 sources

period	duration
57	15
57	22
57	29
75	22
75	29
75	36
93	29
93	36
93	43

Exp 1 - 2d MDS solution

Stress = 0.13587, $R^2 = 0.90542$

Exp 1 - 3d MDS solution

Stress = 0.08832, $R^2 = 0.9444$

Problems with 3d MDS

- Difficult to interpret
 - proximity of some stimuli
 - 2d computer presentation
- Solution plot dimensions individually
 - analyze each separately
 - trends became easier to observe

Experiment 2

- 20 participants
- 9 new settings
- randomization
- same 2 sources

duration	random %
22	0
22	125
22	160
29	0
29	100
29	125
36	0
36	50
36	100

Exp 2 - 3d MDS

- Improved measures over 2d
 - Stress = 0.08268
 - $-R^2 = 0.96403$
- Again graphed dimensions separately

Experiment 3

- 22 participants
- 9 new settings
- randomization
- same 2 sources

period	random %
57	0
57	50
57	100
75	0
75	100
75	125
93	0
93	125
93	160

Exp 3 - 3d MDS

- Improved measures over 2d
 - Stress = 0.07481
 - $-R^2 = 0.97175$
- Again graphed dimensions separately

Preliminary Conclusions

- meaningful patterns in MDS
 low stress & high variance
- sound source clearly differentiated
- processing clear focus of listening
- parameters not obvious in results
- secondary inquiry inconclusive

III. Analysis of Results

MDS correlation

- Acoustic measures of timbres

 Iverson and Krumhansl, 1993
 Kendall, Carterette and Hajda, 1999
- Statistical correlation to dimensions
 - treated as independent variables
 - significant correlations noted

Analytical Method

- List of potential descriptors
 - settings-based
 - actual and literature
 - measurements-based in 2 & 3
- Computed Pearson correlation
 - Nearly all were significant (*p*<0.01)
 - Highest coefficient noted

Exp 1 - period & duration

- 2d MDS dimension 2

 length scaled by log-2 & 1000/L
 significant at *p*<.001 level

 3d MDS dimension 2
 - length scaled by log-2
 - significant at p<.001 level

Exp 1 - period & duration

- 3d MDS dimension 3
 - grain width density
 - significant at p<.001 level

Exp 2 - randomized duration

2d & 3d MDS - dimension 2

 minimum length scaled by log-2
 settings & measurements agree
 significant at p<.001 level

Exp 2 - randomized duration

- 3d MDS dimension 3
 - maximum length scaled by log-2
 - settings & measurements agree
 - significant at p<.001 level

Exp 3 - randomized period

- 2d & 3d MDS dimension 2
 - grain period & grain delay
 - significant at p<.001 level
 - perfectly correlated to each other

Exp 3 - randomized period

- 3d MDS dimension 3
 - grain period bandwidth in ms
 - settings separate ms from %
 - significant at p<.001 level

Summary of Findings

- durations
 - specified directly
 - log-2 scaling
 - max/min when randomized
- voice organization
 - period vs. others
 - mean/bw when randomized
- settings vs. measurements

IV. Application of Findings

GUI Design Issues

Sliders

- visibly define range and current setting
- one click per parameter change
- Audio Output
 - randomization results in differences between control settings and output
- different scaling functions
- different randomization controls

Prototype Interface

GrainStream Interface

Reflections

- use of new scaling for duration
- UI design based on findings
- results countered earlier intuitions
- evidence to support revision

Future Directions

- examine scaling issue directly
- study other granular parameters
- study more complicated textures
- revisit secondary inquiry directly
- use of other methods, not MDS

Perceptually significant features of granular processing

Nathan Wolek Stetson University DeLand, FL, USA