
Wolek 1

Granular Toolkit v1.0 for Cycling74's Max/MSP

Nathan Wolek
School of Music, Northwestern University

711 Elgin Rd., Evanston, IL 60208-1200, USA
Email: n-wolek@northwestern.edu

ABSTRACT

Since the generation of granular textures was first automated using a computer

(Roads 1978), granular synthesis has grown to become a popular tool for creating new

sounds in electro-acoustic music. Many effects can be achieved through the granulation

of sampled sound including time compression (Jones and Parks 1988) and expansion

(Truax 1990) independent of pitch alterations. Such effects can be created using

Cycling74's Max/MSP software, allowing them to be utilized in real-time. However, the

software does not include sufficient externals to meet the efficiency and flexibility needs

for creating such effects. This paper details a collection of externals and abstractions

for Max/MSP that the author has created with the aim of meeting these needs.

BACKGROUND

The basic concept behind granular synthesis can be traced back to Dennis

Gabor, who made the assertion that "it is our most elementary experience that sound has

a time pattern as well as a frequency pattern (Gabor 1947, 591)." Gabor developed a

model of sound that linked these to two attributes in fundamental particles that came to be

known as "grains." These short bursts of sound are only a few milliseconds in length

with variable frequency content and combine with other grains to form larger sounds.

Research into the musical applications of Gabor's granular sound model was

limited until computers were first used to automate the process of generating the

hundreds of the short sounds per second that this model necessitates (Roads 1978).

Since the first computer implementation of granular synthesis, interest has shifted toward

sampling grains from a pre-recorded sound source, also known as granulation (Roads

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 2

1985; Truax 1987). These short bits of sound are then re-synthesized to create a

desired effect that builds upon the original sound source. Effects such as time-

contraction (Jones and Parks 1988) and time-expansion (Truax 1990) without any

variation to the pitch of a source recording are two examples of granulation effects.

Depending on the control parameter settings, a variety of new sounds can be created by

granulating a single source sample.

Previous software for performing granular synthesis or processing has taken

different forms, with each implementation having its own methods and level of control to

offer the end user. Some applications have aimed to help users by generating the large

amounts of data needed to realize granular sounds within some synthesis languages

(Roads 1978; Helmuth 1991, 1993; Orton, Hunt and Kirk 1991). Others have developed

applications that handle both the parameter and audio needs for generating granular

sounds (Roads and Alexander 1995; Behles, Starke and Röbel 1998; Rolfe and Keller

1998). Because the concept of grains can be the basis for different effects, it is

desirable to have software akin to a toolkit that would have both low-level operators and

high-level effects for users to exploit however they see fit. This is the goal of the

software described in this paper.

MAX/MSP

Cycling74's Max/MSP is "a high-level, graphical programming language (Cycling74

2001, 3)" that allows the user to easily put together signal networks and control

structures for the production of audio, MIDI and multimedia projects, all of which can be

controlled in real-time. The current version of the software runs on Apple PowerPC-

based computers under versions 8.1 to 9.x of the Mac OS. It is an ideal environment to

experiment with ideas because one can quickly connect (using virtual "patch cords")

smaller blocks of code (known as "objects") together to form larger audio processing

networks ("patches"). The environment offers a semi-open architecture in which anyone

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 3

capable of programming in C can use the software developers' kit to develop custom

objects ("externals") that can be freely distributed and used by others working with the

software. In addition to the development of externals using the C programming language,

Max/MSP users can encapsulate patches so that they can be re-used in other patches

(most often referred to as "abstractions"). Once in this form, abstractions can be called

in the same manner as objects or externals.

This level of customization makes Max/MSP an ideal environment for exploring

granular concepts of sound and developing methods of employing them in processing

effects. Patches that implement granular synthesis and sampling have been previously

reported using an earlier incarnation of Max that ran on the IRCAM Signal Processing

Workstation (Helmuth 1993; Lippe 1994; Todoroff 1995). Some externals for grain

generation were also developed for this version of Max (Eckel, Rocha-Iturbide and

Becker 1995). However, externals that deal with specifically with audio according to

granular concepts are just beginning to appear for Cycling74’s Max/MSP, including those

detailed in this paper. These new granular externals should allow Max/MSP users to

more easily create new and interesting patches built on the concepts of granular

processing. In addition, they could be used to develop a series of new abstractions for

producing basic granular effects more efficiently.

NEW GRANULAR EXTERNALS

This toolkit began with the idea that new externals were needed for the Max/MSP

environment that worked at the granular level. These externals needed to manage the

various control parameters, define each grain internally and ensure that parameter

updates were deferred until the beginning of a new grain. The process of development

was somewhat unscripted, with revelations in the development of one external leading to

the concept for the next and techniques discovered in the development of another

leading to revisions in externals that were previously thought to be complete. In the end,

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 4

four externals were created to meet the different control needs that the various forms of

granular processing require (figure 1). The name of each begins with the prefix of

"grain" combined with the suffix that describes the control method each employs:

'grain.bang~', 'grain.pulse~', 'grain.stream~', and 'grain.phase~'.

The externals are setup to operate in a consistent manner with the same control

parameters for each external. All four of the externals require two arguments in order to

be used. The first argument names the 'buffer~' object holding the sound file to be

sampled and the second names the 'buffer~' object holding the window shape to be

used. The use of a buffer as the sampling source allows these granular objects to

sample in a manner similar to other objects included in the Max/MSP distribution with

which most users should be familiar (such as 'groove~' or 'wave~'). The second buffer

gives users the flexibility to either use the window files included in the toolkit or to design

their own. Either buffer can be changed from its initial setting by using messages. To

change the sampling buffer, the user would send a message containing the text

'setSound' followed by the name of a buffer. Likewise, changing the window buffer

involves sending a message with the text 'setWin' and a buffer name. If these messages

are used while processing is enabled, the grain externals will defer sampling from the

newly specified buffer until the current grain has completely sounded. This deferment

prevents any sample discontinuities that could result from switching buffers in the middle

of a grain.

Interpolation can be applied to either of the buffers being sampled in the form of

an all-pass interpolation filter (Dattorro 1997). By default interpolation is turned on for

sampling from the sound source buffer and off for sampling from the window buffer.

These decisions on the default states were made based on the improvement of audio

quality compared with the added processing load that interpolation on each buffer would

have. Each can be turned on or off by using either the 'sndInterp' and 'winInterp'

message with an argument of 1 or 0, denoting on or off respectively.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 5

The leftmost inlet on each of the externals is dedicated to the control input and

each has only one outlet that is used to output the granular signal. The remaining inlets

are capable of receiving their data in the form of either Max messages or MSP signals. In

either case, changes sent to these inlets are always deferred to the beginning of the

next grain generated by the object. This ensures that their implementation is consistent

with the concept of grains as being fundamental units with constant parameters

throughout their short durations (Xenakis 1971). The second inlet on each is labeled

"sound begin" and changes sent here determine the offset in milliseconds from the

beginning of the sound buffer to begin sampling for the grain specified. Values that

would be beyond the boundaries of the buffer's length are simply wrapped around in a

manner similar to the modulo operator. For example, a value of 1100 milliseconds for

sampling from a buffer that is only 1000 milliseconds long would result in sampling

actually occurring at 100 milliseconds from the beginning of the buffer; a value of 2100

milliseconds would result in the same actual offset. The last inlet is described as the

"grain pitch multiplier" value and affects the sampling increment (how many samples are

skipped for each sample in the audio output) for the sound buffer. It is labeled in terms of

pitch because of the aural effect that changes in sampling increment have upon output.

A pitch multiplier of 1.0 causes the samples to sound at their normal recorded pitch. A

multiplier of 2.0 effectively causes the samples to sound an octave higher, while a

multiplier of 0.5 causes the sample to sound an octave lower. A floating-point value may

be specified, making more minute pitch transpositions possible. Both 'grain.bang~' and

'grain.pulse~' require an additional specification of the grain length. This is necessary

due to the control methods they employ, which will be explained.

The first external is named 'grain.bang~' and, as the name suggests, is controlled

with the common Max control message of 'bang'. When a 'bang' is sent into it's leftmost

inlet, a single grain is output from the signal outlet. While it is in the process of outputting

that grain, all bangs that might be received by the control inlet are ignored. This protects

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 6

from the unwanted effect of interrupting a grain that is in the processes of sounding.

Once the grain has completely sounded, the external will once again begin monitoring the

inlet for bangs. However, the use of bangs as a control signal means that grain onsets

can only occur at the interrupts of the Max scheduler and never in between. One

consequence of this is that the interval between successive grain onsets can never be

smaller than the interrupt for the scheduler. For example, if the Max scheduler is set for

an interval of 20 milliseconds, this means that grains can never be closer than 20

milliseconds apart or repeat at a frequency higher than 50 Hertz. This may not seem to

be a problem upon first glance since grains are typically of a length on the order of 40 to

50 milliseconds, however there is an additional consequence of the granular frequency's

dependence on the scheduler.

Dependence on the scheduler means that the time between successive grain

onsets will always be a multiple of the scheduler interrupt. Because of this, stable

frequencies can only be produced at those frequencies that are sub-harmonically related

to the scheduler’s frequency. Frequencies between these sub-harmonics will have

onset intervals that bounce unpredictably between the interrupt-related values which it

lies. Barry Truax made note of this limitation in his own implementation of granular

synthesis, referring to timings as being "quantized (Truax 1988, 18)." The sub-harmonics

can be calculated by dividing the interrupt frequency by integers greater than one. Using

the example of a 20 millisecond interrupt again would mean a maximum granular

frequency of 50 Hertz and lower frequencies at 25, 16.6, 12.5, 10, etc. Lowering the

scheduler interval helps to alleviate the problem, since a smaller interrupt increases the

maximum possible frequency, but the sub-harmonic relationship persists. An interrupt

interval of one millisecond would allow for a maximum granular frequency of 1000 Hertz

and sub-harmonics of 500, 333.3, 250, 200, 166.6, etc. However, lowering the interval

of the scheduler can work against the computational efficiency that the interval is meant

to create. It became clear during development that, in order to alleviate this problem, a

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 7

control signal that operates at the sampling rate is needed. This lead to the creation of

the 'grain.pulse~' external.

The 'grain.pulse~' external monitors the signal connected to its leftmost inlet for

zero-to-one transitions which it reacts to by outputting a grain. This type of control

signal, in which all samples within a single period have a value of zero except for a single

sample that has a value of one, is typically referred to as an pulse-train. In the Max/MSP

environment, this signal can be generated by the 'train~' object. Since the control signal

allows a resolution of grain intervals inversely related to the sampling rate, it allows the

sub-harmonics to be much closer together at the lower end of the frequency spectrum.

Because granular frequencies are in this range, the audio-rate control signal provides a

much better resolution. The increase in computational load that an audio-rate control

signal causes within Max/MSP was found to be minimal. Just as bangs are handled by its

counterpart 'grain.bang~', the 'grain.pulse~' external will ignore any pulse received while

a grain is being produced. Additional parameters are set through the other inlets just as

they are with the other grain externals.

With both of the previous externals, a single control event triggers the output of

one grain with a predetermined length. This one-to-one correlation between control and

output means that in order to create a continuous stream of grains, the control signal is

required to be repetitive. In order to eliminate this requirement, 'grain.stream~' external

was created. This external requires that the user only specify the granular frequency in

order to create a continuous stream of grains. With this external, grains are created

consecutively at the specified frequency with no delay between them. Changes in

frequency are applied only at the start of a new grain and because of this, the user may

experience a delay between the initiation of a frequency change and its application to the

output. This may seem undesirable at first, however it is a better fit with the concept of

the grain as an indivisible unit (Xenakis 1971).

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 8

A single voice of continuous grains works very much like amplitude modulation

applied to the sampled sound source, but it can be combined with other voices to fill out

the sound and obtain a more even re-synthesis. However, the 'grain.stream~' object

provides no manner for the synchronization of phases between multiple instances of

itself. The multiple streams can move in and out of phase with one another in an

uncontrollable manner. As a solution to this, the 'grain.phase~' external re-introduces the

need for a control signal in order to maintain more precise phase relationships. The

control input takes the form of a signal modulating from zero to one which controls the

phase of the window applied to the sampled source. This type of output is generated by

the standard Max/MSP object called 'phasor~', multiple instances of which can maintain

constant phase relationships. It is important to note that the phase signal controls only

the window and not the sampling increment for the sound buffer. The sampling

increment is still computed in relation to the specified pitch multiplier and remains fixed for

the duration of a single grain.

ADDITIONAL EXTERNALS

Two additional externals were developed in order to more easily manage multiple

instances of the 'grain.pulse~' and 'grain.phase~' objects. When using several instances

of either object, it is often desirable to have their control inputs be evenly out of phase

with one another, which means individually setting the initial phase for multiple instances

of either the 'train~' or 'phasor~' objects. This prompted the development of externals

based on these objects that have multiple outlets evenly out of phase with one another.

These externals are called 'train.shift~' and 'phasor.shift~'.

They each require a single integer argument to specify the number of outlets the

object should have. Once instantiated, the outlets will produce outputs similar to the

objects from which they derive their names, with ‘phasor.shift~’ generating phase ramps

from 0 to 1 and ‘train.shift~’ producing pulse-trains. However, the individual outlets will

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 9

have initial phases increasing from left to right with values equal to the outlet number

minus one divided by the total number of outlets [init_phase = (out_num – 1) /

num_of_outs]. For example, if the 'phasor.shift~' external is given an argument of 2, it

will have two outlets with the first having an initial value of 0.0 and the second being 0.5

(figure 2); if given an argument of 3, three outlets will be produced with initial values of

0.0, 0.33, and 0.66; and so on up to a maximum argument of 32. In the case of

‘train.shift~’, these initial values would be multiplied by the period length in order to

determine when the next pulse would be produced from that outlet. These externals

greatly reduce clutter in patches where multiple voices of grains are needed. Although

they have been developed for use with the granular externals described here, surely

others will find additional uses for them.

EFFECT ABSTRACTIONS

In addition to the new externals that have been created for this toolkit, several

abstractions were developed that provide ready-made granular effects built with the

externals described above. These abstractions were built with a consistent interface

style in order to make incorporating them into other patches as easy as possible for

users. Most of the effects have two versions: one that operates on static sound files

and a second that processes audio live as it streams into the abstraction. These two

parallel methods of granular sound sampling are analogous to those previously

implemented by Barry Truax for the DMX-1000 (Truax 1988). All of the effects operate in

real-time with very reasonable loads on the current generation of G3 and G4 PowerPC

processors.

Changes are made to the sound input through the leftmost inlet. For those effects

working with a static buffer this inlet handles messages used to load sound files into that

buffer. A bang message will bring up the appropriate dialogue window so that the user

can select the file from the hard drive, while a message containing the name of a file itself

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 10

will load that file into the buffer. If the user would like to use a 'buffer~' object that is

within another patch, a message with the text 'setBuffer' followed by the identifying

name associated with that instance of the 'buffer~' object will allow the abstraction to

use it instead of the internal buffer.

For those abstractions with a streaming input buffer, the user simply needs to

connect the signal that is to be processed to the leftmost input. Any signal may be used

including one from a live audio input. The abstraction records the input using an internal

looping buffer while the processing is being performed. These live sampling effects are

able to achieve very low latency because the grain externals are programmed to read

samples from the buffer in reverse. This technique was described by Barry Truax, who

maintained that "at this time level there is no aural difference between forwards and

reverse (Truax 1990, 105)". However, care must be taken with the current abstractions

because this equivalence may be lost if the user specifies longer grains. In addition to

the signal input, on the streaming abstractions the second inlet from the left allows the

user to switch buffer recording on and off as needed using values of 1 or 0. A short,

10-millisecond fade is applied when switching on or off in order to prevent clicks due to

signal discontinuity that this switching may cause.

All of the toolkit's abstractions have a common prefix of 'gran' to help the user

identify them. Those with a static buffer are given the suffix of 'file', while those with a

continuous streaming buffer are given a suffix of 'live'. These naming conventions

should help the user to identify common effects, while separating the different forms of

buffer sampling provided for each processing effect.

Each effect abstraction has several control parameters that can be changed in

real-time to affect the processing output. By double-clicking on an instance of a specific

abstraction, a window will be opened that can be used as a control interface for the

effect. It uses standard Max/MSP interface items, such as number boxes and drop down

menus, to provide the user with basic abilities to affect the processing output. Within the

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 11

interface, effort has been made to place similar parameters next to each other and in

common locations between the different abstraction interfaces. This should help the

user quickly become familiar with the interface elements in a single abstraction and

translate that knowledge easily to the other abstractions.

In addition to the provided interface, the abstractions offer a fairly simple method

for creating custom interfaces and control mechanisms. The rightmost inlet and outlet are

used to manage changes in the numerous control parameters through messages

exchanged with the parent patch. All changes to the control parameters are output from

the outlet in a consistent message format with the name of the parameter followed by its

new value. For example, if a message were output reading "pitch_mult 1.2" would mean

that the pitch multiplier had been changed to a value of 1.2. Similar messages can also be

sent to the corresponding inlet in order to change the parameter setting. As with the

previous example, if a message were sent reading "pitch_mult 1.0" to the rightmost inlet it

would change the value for the pitch multiplier to 1.0. Using the 'route' and 'prepend'

objects from the standard Max distribution, it is quite simple to create a custom interface

that communicates with the abstraction (figure 3). It is important to note that changes

sent to the rightmost inlet are also echoed to the rightmost outlet. Because of this, the

user must protect against infinite loops when creating custom interfaces.

Any additional outlet found on a given abstraction is used to output a granular

signal for either playback or further processing. Most of the abstractions produce only a

single, mono signal. All abstractions accept only mono signals as input, either as single

connection for the streaming buffer effects or a mono sound file for the static buffer

effects. A few of the effect abstractions produce stereo output and one type produces

eight individual streams at varied phases. In order to help manage processor load, all

signal outlets from these abstractions have a 'pass~' object placed before their last

connection. Those familiar with Max/MSP will know that this allows the abstractions to

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 12

work with a standard 'mute~' object in halting their processing without producing

unwanted noise in the audio output.

The names of these abstractions and a brief description of their processing effect

follows. Included in the descriptions are any references on the specific type of granular

processing used and the processor load of the abstraction. Processor utilization was

monitored using the DSP status window in Max/MSP running on an iBook G3 clocked at

500 MHz. A change in the control parameters can affect the amount of processing the

abstraction uses and so the figures stated here are only approximates using mostly

default settings.

gran.ASstream.file~ & gran.ASstream.live~ (5-6% CPU utilization) – These are

perhaps the simplest of the abstractions. Using their respective form of sampling input,

both produce a single stream of grains based on the concept of asynchronous granular

synthesis (Roads 1991). These abstractions have very little processor load but also

have minimal control parameters affecting the sound.

gran.pitch.file~ & gran.pitch.live~ (16-17% CPU utilization) – The pitch

abstractions use eight voices of granular processing with evenly spaced phases to

maintain an even re-synthesis of the sampled sound. Using a single pitch multiplier, the

user can transpose the pitch height of an input, which in the case of live sources could

be used to produce harmonies.

gran.chord.file~ & gran.chord.live~ (16-18% CPU utilization) – Similar construction

to the above "pitch" abstractions with the added ability to specify a list of pitch multipliers.

Individual grains are then transposed to selected intervals within the given list. The end

result sounds like a chord based on the list of multipliers.

gran.groove.file~ (15-16% CPU utilization) – This abstraction is meant to mimic the

behavior of the 'groove~' object which is included with Max/MSP. However, since this

abstraction uses granular processing to loop the sound file, the speed and pitch can be

manipulated independently. This effect does not have a streaming buffer version

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 13

because its time compression and expansion capabilities require that the input sample be

static. It uses the same phase-related grain streams that were previously described in

order to create an even re-synthesis.

gran.play.file~ (14-15% CPU utilization) – This abstraction mimics the behavior of

the 'play~' object within Max/MSP. The middle inlet of this abstraction provides the ability

to update the sample offset at the signal rate and can therefore be used for a variety of

looping effects. This effect also does not have a streaming buffer version for the same

reasons as 'gran.groove.file~'.

gran.space2.file~ & gran.space2.live~ (19-20% CPU utilization) – Based on the

"pitch" effect, this abstraction places the individual streams at specific panning locations

across the stereo spectrum. These streams are numbered one to eight from left to right

and can be turned on or off in order to create different spatial effects.

gran.space8.file~ & gran.space8.live~ (18-19% CPU utilization) – The same

concept as the above "space2" effect with the difference of individual streams output

from different outlets. This gives the user the ability to process the streams separately or

distribute them within a multi-channel audio output system.

gran.cloud.file~ & gran.cloud.live~ (19-20% CPU utilization) – These use the

model of asynchronous granular synthesis with an element of random deviation from

basic control parameters to produce "cloud" textures (Roads 1991). These abstractions

provides more parameters than the others described in this paper and are far more

processor intensive at higher granular frequencies.

ABSTRACTION CONTROL PARAMETERS

Many of the effect abstractions have common names for parameters that are the

same or operate in a highly similar fashion. Rather than explain them in the context of the

individual abstractions, the following section provides a common reference for the

different parameter names and a brief explanation of what each controls. The shortened

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 14

names are the labels used in the control interface displayed when the user double-clicks

on a given abstraction instance. These are also the names used by the messages

handled by the rightmost inlet and outlet for custom control of the parameters.

samp_offset – Sample offset. In abstractions that use a static buffer, this

parameter is used to define the number of milliseconds from the beginning of the buffer to

begin sampling grains. It is not available in the streaming buffer abstractions because the

sampling position always follows the recording position within the buffer.

buf_size – Buffer size. Used by streaming buffer abstractions in order to define

the length of the buffer used for sampling the input signal in number of milliseconds.

speed – Only available in the "gran.groove.file~" abstraction. Used to control the

speed of playback for the sampled sound upon re-synthesis. For example, a value of

1.0 is equivalent to normal playback speed, 0.5 equals half the normal speed, and 2.0

twice the normal speed.

offset_bw – Offset bandwidth. Defines the number of milliseconds that the

sample offset may randomly deviate from itself. The bandwidth represents the total

possible deviation with both the positive and negative direction combined. The maximum

deviation possible in either single direction is one half of the value specified.

freq – Frequency. For some abstractions, specifies the number of grain onsets

per second in Hertz or roughly the inverse of the time interval between grain onsets

expressed in seconds. Frequency is used in addition to grain length because the two

are not always inversely related. The length can sometimes vary independently from the

onset frequency, as is the case in asynchronous granular synthesis.

freq_bw – Frequency bandwidth. Defines as a percentage the maximum amount

of random deviation allowed for the frequency parameter. The percentage is used to

derive the actual deviation in Hertz using the frequency parameter value. The use of a

percentage allows the bandwidth to be perceived consistently across the frequency

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 15

spectrum. Again the bandwidth is the total deviation possible with both the positive and

negative directions combined.

length – The length of grains to be produced in milliseconds. Lengths for granular

processing are typically limited to a range of 10 to 100 milliseconds and are most often in

the 40 to 50 millisecond range.

length_max – Maximum length. Expressed as a percentage of the inverse of the

frequency setting, this parameter allows the grains to overlap one another producing a

thicker texture. At 100 percent, no overlap should occur because the length would equal

the inverse frequency.

length_min – Minimum length. Another percentage of the frequency setting's

inverse that allows the grains to be shortened, creating short delays between grains.

The actual length of individual grains fluctuates randomly between the maximum and

minimum length.

winShape – Grain windowing function. Allows the user to choose from a

selection of common windowing functions to be applied to the samples retrieved from the

buffer. Different shapes have different spectral and amplitude characteristics that can

change the sound of the granular output.

pitch_mult – Pitch multiplier. Used to raise or lower the perceived pitch of the

grains. It is actually used to control the sampling increment of the sound buffer, but the

aural result is in the form of a pitch manipulation. For most samples, a setting of 1.0

would be normal playback, with 2.0 sounding an octave higher and 0.5 an octave lower.

pitch_bw – Pitch multiplier bandwidth. Provides the bandwidth for random

deviation from the specified pitch multiplier and is expressed as a percentage of that

value. Again, the use of a percentage gives the bandwidth a consistent aural width

across the frequency spectrum.

stream_config – Stream configuration. Used in the "space" effects, this

parameter allows the user to turn the individual streams of granular sampling on or off.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 16

The related message has a somewhat different format from those for other parameters.

It must contain the parameter name followed by the stream number and a 1 or 0 to

change the stream's state. For example, a message reading "stream_config 4 0" would

turn stream four off, while "stream_config 4 1" would turn it on again.

gain – Provides a basic gain control over the granular output. The value is

expressed in decibels and is then converted into a multiplier to scale the amplitude of the

grains. For example, a value of 0.0 dB would multiply the output by 1.0 while a value of

–76.0 dB would multiply the signal by 0.0.

gain_bw – Gain bandwidth. Controls the bandwidth of the random deviation from

the specified gain parameter, allowing the gain to vary between individual grains. The

value is expressed in decibels.

pan_min – Minimum panning position. Used only in the "cloud" abstractions, it

allows individual grains to be randomly panned across the stereo spectrum. This control

gives the user the ability to limit the width of the random panning. The value is expressed

as a floating point number from 0.0 to 1.0, with 0.0 representing hard left and 1.0

representing hard right.

pan_max – Maximum panning position. Used in connection with "pan_min" in

order to limit the area of the stereo spectrum in which the random panning can occur.

EXTRAS

The toolkit includes help files for each of the externals and abstractions so that

users can reference them just as they would objects included with their standard

Max/MSP installation. There are also a few extra items intended to aid the user. A

number of envelopes are included in the 'winShape' menu of the granular abstractions,

which should give the user ample selection in choosing an envelope for the grains. The

shapes include Gaussian, quasi-Gaussian, triangle, three-stage linear, Blackman,

Blackman-Harris, Hamming, Hanning, exponential decay and reversed exponential decay.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 17

These shapes and the formulas used to generate them were drawn from several

sources (Roads 1996, 2001; Oppenheim and Schafer 1999). All of the windows used in

the effect abstractions are 512-sample sound files that were created within Max/MSP

itself. In order to demonstrate how this was accomplished for those who may wish to

create their own windows, a patch called 'gtk.winMaker' is included with the toolkit.

In addition to the patch demonstrating window construction, a patch called

'gtk.objectGuide' is included. This patch contains all of the externals and abstractions that

are included with the toolkit. It is meant to serve as a quick reference to the additional

tools that are available once the user has added the toolkit to his or her installation of

Max/MSP.

CONCLUSION

The externals and abstractions in this granular toolkit should appeal to both the

novice and expert user of granular processing. Novices will find useful effects built to

be easily incorporated into their own work. Experts will find useful low-level tools that

allow them to freely experiment with the possibilities of granular processing at various

levels of precision. Both should be pleased with the efficiency and flexibility that the

granular toolkit offers to all.

This toolkit is freely available for download from the author's web site at the

following address: "http://www.nathanwolek.com" Follow the menu link to the software

section in order to download a compressed archive of the files. The user must follow the

included instructions on where to place the files on his or her hard drive. A working

copy of Cycling74's Max/MSP must be present in order to use the toolkit.

ACKNOWLEDGEMENTS

This toolkit began during the development stages of several projects in which I

participated as a programmer. They include Amnon Wolman's Thomas and Beulah, Paul

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 18

Hertz's Fool's Paradise and the Northwestern Center for Art and Technology's Portal

Project. I would like to sincerely thank the artists involved in those projects for pushing

me to develop the ideas that evolved into this toolkit. Additional support this research

was provided by a grant from the Northwestern University Graduate School.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 19

Figure 1.

Figure 2.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 20

Figure 3.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 21

REFERENCES

Behles, G., S. Starke and A. Röbel. 1998. “Quasi-Synchronous and Pitch-Synchronous
Granular Sound Processing with Stampede II.” Computer Music Journal 22 (2): 44-51.

Cycling74. 2001. Max 4: Getting Started. Online documentation. Internet:
http://www.synthesisters.com/download/Max4GettingStarted.pdf, 1 March 2002.

Dattorro, Jon. 1997. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal
of the Audio Engineering Society 45 (10): 764-788.

Eckel, G., M. Rocha-Iturbide and B. Becker. 1995. “The development of GiST, a Granular
Synthesis Toolkit Based on an Extension of the FOF Generator.” In R. Bidlack, ed.
Proceedings of the 1995 International Computer Music Conference. San Francisco:
International Computer Music Association, pp. 296-302.

Gabor, Dennis. 1947. "Acoustical Quanta and the Theory of Hearing." Nature 159
(4044): 591-594.

Helmuth, Mara. 1991. “Patchmix and StochGran: Two Graphical Interfaces.” In B.
Alphonce and B. Pennycook, eds. Proceedings of the 1991 International Computer
Music Conference. San Francisco: International Computer Music Association, pp. 563-
566.

Helmuth, Mara. 1993. “Granular Synthesis with Cmix and MAX.” In S. Ohteru, ed.
Proceedings of the 1993 International Computer Music Conference. San Francisco:
International Computer Music Association, pp. 459-452.

Jones, Douglas L. and Parks, Thomas W. 1988. "Generation and Combination of Grains
of Sound." Computer Music Journal 12 (2): 27-33.

Lippe, Cort. 1994. "Real-Time Granular Sampling Using the IRCAM Signal Processing
Workstation." Contemporary Music Review 10 (2): 149-155.

Oppenheim, Alan V. and Schafer, Ronald W. 1999. Discrete-Time Signal Processing.
2nd edition. Upper Saddle River, New Jersey: Prentice Hall.

Orton, R., A. Hunt and R. Kirk. 1991. “Graphical Control of Granular Synthesis using
Cellular Automata and the Freehand Program.” In B. Alphonce and B. Pennycook, eds.
Proceedings of the 1991 International Computer Music Conference. San Francisco:
International Computer Music Association, pp. 416-418.

Roads, Curtis. 1978. "Automated Granular Synthesis of Sound." Computer Music
Journal 2 (2): 61-62.

Roads, Curtis. 1985. "Granular Synthesis of Sound." In C. Roads and J. Strawn, eds.
1985. Foundations of Computer Music. Cambridge: MIT Press, pp. 146-159.

Roads, Curtis. 1991. "Asynchronous granular synthesis." In G. DePoli, A, Piccialli, and
C. Roads, eds. Representations of Musical Signals. Cambridge: MIT Press, pp. 143-186.

Roads, Curtis and Alexander, John. 1995. Cloud Generator. Computer software.
Internet: ftp://ftp.create.ucsb.edu/pub/CloudGenerator/cg.nofpu.hqx, 1 September 2002.

Granular Toolkit v1.0 for Cycling74's Max/MSP Wolek 22

Roads, Curtis. 1996. The Computer Music Tutorial. Cambridge: MIT Press.

Roads, Curtis. 2001. Microsound. Cambridge: MIT Press.

Rolfe, Chris and Keller, Damian. 1998. MacPod. Computer software. Internet:
http://www.thirdmonk.com/Download/MacPod13.hqx, 28 August 2002.

Todoroff, Todor. 1995. “Real-Time Granular Morphing and Spatialisation of Sounds with
Gestual Control within Max/FTS.” In R. Bidlack, ed. Proceedings of the 1995 International
Computer Music Conference. San Francisco: International Computer Music Association,
pp. 315-318.

Truax, Barry. 1987. “Real-Time Granulation of Sampled Sound with the DMX-1000.” In S.
Tipei and J. Beauchamp, eds. Proceedings of the 1987 International Computer Music
Conference. San Francisco: International Computer Music Association, pp. 138-145.

Truax, Barry. 1988. "Real-Time Granular Synthesis with a Digital Signal Processing
Computer." Computer Music Journal 12 (2): 14-26.

Truax, Barry. 1990. "Time-Shifting of Sampled Sound with a Real-Time Granulation
Technique." In Proceedings of the 1990 International Computer Music Conference. San
Francisco: International Computer Music Association, pp. 104-107.

Xenakis, Iannis. 1971. Formalized Music. Bloomington: Indiana University Press.

