
Wolek 1

A Granular Toolkit for Cycling74's Max/MSP

Nathan Wolek
School of Music, Northwestern University

711 Elgin Rd., Evanston, IL 60208-1200, USA
Email: n-wolek@northwestern.edu

ABSTRACT

Since the generation of granular textures was first automated using a computer

(Roads 1978), granular synthesis has grown to become a popular tool for creating new

sounds in electro-acoustic music. Many effects can be achieved through the granulation

of sampled sound including time compression (Jones and Parks 1988) and expansion

(Truax 1990) independent of pitch alterations. Such effects can be created using

Cycling74's Max/MSP software, allowing them to be utilized in real-time. However, the

software does not include sufficient externals to meet the need for maximum efficiency

and flexibility in creating such effects. This paper details a toolkit for Max/MSP that the

author has created with the aim of meeting these needs.

BACKGROUND

The basic concept behind granular synthesis is often traced back to the ideas

presented by Dennis Gabor, who made the assertion that "it is our most elementary

experience that sound has a time pattern as well as a frequency pattern (Gabor 1947, p.

591)." Gabor developed a model of sound that linked these to two attributes in

fundamental particles that came to be known as "grains." These short bursts of sound

are only a few milliseconds in length with variable frequency content and combine with

other grains to form larger sounds.

Research into the musical applications of Gabor's granular sound model was

limited until computers were first used to generate the hundreds of the short sounds per

second that this model necessitates. Since the first computer implementation of

A Granular Toolkit for Cycling74's Max/MSP Wolek 2

granular synthesis (Roads 1978), emphasis has shifted away from synthesizing grains

based on mathematical models toward the sampling of grains from a pre-recorded

sound source. These short bits of sound are then re-synthesized to create a desired

effect that builds upon the original sound source. Effects such as time-contraction

(Jones and Parks 1988) and time-expansion (Truax 1990) without any variation to the

pitch of a source recording are two examples of resulting effects one might obtain from

the granular method of sampling and re-synthesis. Depending on the control parameter

settings, varied sounds can be created using a single source sample, ranging from

rhythmic chains of pitched particles to dense clouds of broadband noise.

Software performing granular synthesis has taken different forms in the past, with

each implementation having its own methods of control and available parameters.

However, there has not been a platform for users to freely experiment with the concepts

of this process and build customized structures that create unique effects using basic

building blocks that work with individual grains. This type of tool for free exploration of

granular processes seems like a logical method for working with the technique since it is

in reality a concept of sound generation and not a single effect.

MAX/MSP

Cycling74's Max/MSP is "a high-level, graphical programming language

(Cycling74 2001, p. 3)" that allows the user to easily put together signal networks and

control structures for the production of audio, MIDI and multimedia projects, all of which

can be controlled in real-time. The current version of the software runs on Apple

PowerPC-based computers under versions 8.1 to 9.x of the Mac OS. It is an ideal

environment to experiment with ideas because one can quickly connect (using virtual

"patch cords") smaller blocks of code (known as "objects") together to form larger audio

processing networks ("patches"). The environment offers a semi-open architecture in

A Granular Toolkit for Cycling74's Max/MSP Wolek 3

which anyone capable of programming in C can use the software developers' kit to

develop custom objects ("externals") that can be freely distributed and used by others

working with the software. In addition to the development of externals using the C

programming language, Max/MSP users can encapsulate patches so that they can be

re-used in other patches (most often referred to as "abstractions"). Once in this form,

abstractions can be called in the same manner as objects or externals.

This level of customization makes Max/MSP an ideal environment for exploring

granular concepts of sound and developing methods of employing them in processing

effects. An implementation of granular sampling using an earlier incarnation of Max that

ran on the IRCAM Signal Processing Workstation has been previously reported (Lippe

1994). However, externals that deal with specifically with sound according to granular

concepts are just beginning to appear, including those detailed in this paper. These new

externals which work specifically on the granular level should allow Max/MSP users to

more easily create new and interesting patches built on the concepts of granular

synthesis.

NEW GRANULAR EXTERNALS

This toolkit began with the idea that new externals were needed for the Max/MSP

environment that worked at the granular level. These externals needed to manage the

various control parameters, define each grain internally and ensure that updates only

occurred when a new grain was generated. The process of development was somewhat

unscripted, with revelations in the development of one leading to the concept for the next

and techniques discovered in the development of another leading to revisions in

previously completed externals. In the end, four externals were created to meet the

different control needs that the various forms of granular synthesis require. The name of

A Granular Toolkit for Cycling74's Max/MSP Wolek 4

each begins with the prefix of "grain" combined with the suffix that describes the control

method each employs: 'grain.bang~', 'grain.pulse~', 'grain.stream~', and 'grain.phase~'.

The externals are setup to operate in a consistent manner with most control

parameters the same between these four externals. All four of the externals require two

arguments in order to be used. The first argument names the buffer~ holding the sound

file to be sampled and the second names the buffer~ holding the window shape to be

used. The use of a buffer for the sampling source allows these granular objects to

sample in a manner similar to other objects included in the Max/MSP distribution with

which most users should be familiar (such as 'groove~' or 'wave~'). The second buffer

gives users the flexibility to either use the window files included in the toolkit or to design

their own. Interpolation can be applied to either of the buffers being sampled in the form

of an all-pass interpolation filter (Dattorro 1997). By default interpolation is turned on for

sampling from the sound source buffer and off for sampling from the window buffer.

These decisions on the default states were made based on the improvement of audio

quality compared with the added processing load that interpolation on each buffer would

have. Each can be turned on or off by simply using the respective 'sndInterp' and

'winInterp' messages with an argument of 1 or 0, denoting on or off respectively.

The leftmost inlet on each of the externals is dedicated to the control input in

each of the four externals. Each has only one outlet that is used to output the granular

signal. The remaining inlets are capable of receiving their data in the form of either Max

messages or MSP signals. In either case, changes sent to these inlets are always

deferred to the beginning of the next grain generated by the object. This ensures that

their implementation is consistent with the concept of grains as being fundamental units

with constant parameters throughout their short durations (Xenakis 1971). The second

inlet on each is labeled "sound begin" and it determines the offset from the beginning of

the sound buffer to begin sampling for the grain. It is specified in milliseconds and

A Granular Toolkit for Cycling74's Max/MSP Wolek 5

values that would be beyond the boundaries of the buffer's length are simply wrapped

around in a manner similar to the modulo operator. The last inlet is described as the

"grain pitch multiplier" value and affects the sampling increment (how many samples are

skipped for each sample in the audio output) for the sound buffer. It is labeled in terms

of pitch because this is the aural effect that changes in sampling increment have upon

output. A pitch multiplier of 1.0 causes the samples to sound at their normal recorded

pitch. A multiplier of 2.0 effectively causes the samples to sound an octave higher, while

a multiplier of 0.5 causes the sample to sound an octave lower. A floating-point value

may be specified making more minute pitch transpositions possible. Both the

'grain.bang~' and 'grain.pulse~' require the additional specification of the grain length.

This is necessary due to the methods with which their outputs are controlled as is

described next.

The first external is named 'grain.bang~' and, as the name suggests, is controlled

with the common Max control message of 'bang'. When it receives a 'bang' in it's

leftmost inlet, a single grain is output from the signal outlet. While it is in the process of

outputting that grain, all bangs that might be received by the control inlet are ignored.

This protects from the unwanted effect of interrupting a grain that is in the processes of

sounding. Once the grain has completely sounded, the external will once again begin

listening to the inlet for bangs. However, the use of bangs as a control signal means

that grains can only occur at the interrupts of the Max scheduler and never in between.

One consequence of this is that the interval between successive grains can never be

smaller than the interrupt for the scheduler. For example, if the Max scheduler is set for

an interval of 20 milliseconds, this means that grains can never be closer than 20

milliseconds apart or repeat at a frequency higher than 50 Hertz. This may not seem to

be a problem upon first glance since grains are typically of a length on the order of 40 to

A Granular Toolkit for Cycling74's Max/MSP Wolek 6

50 milliseconds, however there is an additional consequence of the granular frequency's

dependence on the scheduler.

Dependence on the scheduler means that the granular frequency will always be

sub-harmonically related to the scheduler's interrupt frequency. If grains can only be

generated at the scheduler interrupts, it means that intervals in between successive

grains will always be multiples of the scheduler interrupt. Sub-harmonics can be

calculated by dividing the interrupt frequency by integers greater than one. Using the 20

millisecond example again, it would mean that the only granular frequencies possible

would be 50, 33.3, 25, 20, 16.6, etc. Lowering the scheduler interval helps to alleviate

the problem, since a smaller interrupt increases the possible frequency limit, but the sub-

harmonic relation persists. An interrupt interval of one millisecond would allow for a

theoretical maximum granular frequency of 1000 Hertz and sub-harmonics of 500,

333.3, 250, 200, 166.6, etc. Additionally, lowering the interval of the scheduler works

against the computational efficiency that the lower frequency is meant to create. In

order to create a better resolution of granular frequencies a control signal that operates

at the sampling rate is needed and is exactly what the 'grain.pulse~' external is meant to

provide.

The 'grain.pulse~' external monitors the signal connected to its leftmost inlet for

zero-to-one transitions to which reacts by outputting a grain. This type of control signal

(in which all samples have a value of zero except for a single sample that has a value of

one) is more commonly referred to as an impulse. In the Max/MSP environment, this

signal can be generated by the 'train~' object. The fact the control signal allows a

resolution of grain placement equivalent to the sampling rate allows the sub-harmonics

to be much closer together at the lower end of the frequency spectrum and therefore

provides a much better resolution within the range of typical granular frequencies. The

additional computational load of a control signal that operated at the audio rate within

A Granular Toolkit for Cycling74's Max/MSP Wolek 7

Max/MSP was found to be not very significant. Like the manner in which bangs are

handled in its counterpart 'grain.bang~', the 'grain.pulse~' external will ignore any pulse

received while a grain is being produced. Additional parameters are again set through

the other inlets, including the length of the grain to be produced upon receipt of an

impulse.

With both of the previous externals, a single event triggered the output of one

grain with a predetermined length. This one-to-one correlation between control and

output meant that in order to create a continuous stream of grains, the control signal had

to be repetitious. In order to eliminate this requirement, 'grain.stream~' external was

created. This external requires that the user only specify the granular frequency in order

to create a continuous stream of grains. With this external, grains are created

consecutively at the given frequency and changes in frequency are only applied at the

start of a new grain. Therefore changes in the granular frequency may not proceed in

direct correspondence to the changes in the frequency that the user makes. This may

seem undesirable at first, however it is a better fit with the concepts behind granular

synthesis.

A single voice of continuous grains works very much like amplitude modulation

applied to the sampled sound source, but it can be combined with other voices to fill out

the sound and obtain a more even re-synthesis. However, the 'grain.stream~' object

provides no manner for the synchronization of phases between multiple instances of

itself. The multiple streams can move in and out of phase with one another in an

indeterminate manner. However with the 'grain.phase~' external, the need for a control

signal is re-introduced in order to more precisely maintain phase relationships. The

control input takes the form of a signal modulating from zero to one which controls the

phase of the window applied to the sampled source. This type of output is generated by

the standard Max/MSP object called 'phasor~', multiple instances of which can maintain

A Granular Toolkit for Cycling74's Max/MSP Wolek 8

constant phase relationships. It is important to note that the phase signal controls only

the window and not the sampling increment for the sound buffer. The sampling

increment is still computed in relation to the pitch multiplier specified and remains fixed

for the duration of a single grain.

ADDITIONAL EXTERNALS

Two additional externals were developed in order to more easily manage multiple

instances of the 'grain.pulse~' and 'grain.phase~' objects. When using several instances

of either object, it is often desirable to have their control inputs be out of phase with one

another. Most often they needed to be consistently even in their phase relationships and

this meant individually setting the initial phase for multiple instances of either the 'train~'

or 'phasor~' objects. This prompted the development of custom versions of these

objects that have multiple outlets evenly out of phase with one another. These externals

are called 'train.shift~' and 'phasor.shift~'.

They each require a single integer argument to specify the number of outlets the

object should have. Once instantiated, the outlets will produce outputs similar to the

objects from which they derive their names with each outlet being an additional 1-over-

the-initial-argument cycle out of phase with the outlet to its left. For example, if the

'phasor.shift~' is given an argument of 2, it will have two outlets with the first having an

initial phase of 0.0 and the second being 0.5; if given an argument of 3, three outlets will

be produced with phases of 0.0, 0.33, and 0.66; and so on up to a maximum argument

of 32. These greatly reduce clutter in patches where multiple voices of grains are

needed. Although they have been developed for use with the granular externals

described here, perhaps others will find additional uses for them.

A Granular Toolkit for Cycling74's Max/MSP Wolek 9

EFFECT ABSTRACTIONS

In addition to the new externals that have been created for this toolkit, several

abstractions were developed that provide ready-made granular effects built with the

externals described above. These abstractions were built with a consistent style and

interface in order to make incorporating them into other patches as easy as possible for

users. Most of the effects have two versions: one that operates on static sound files and

a second that processes audio live as it streams into the abstraction. These two parallel

methods of granular sound sampling are analogous to those previously implemented by

Barry Truax for the DMX-1000 (Truax 1988). All of the effects operate in real-time with

very reasonable loads on the current generation of G3 and G4 PowerPC processors.

Changes are made to the sound input through the leftmost inlet. For those

effects working with a static buffer this inlet handles messages used to load sound files

into that buffer. A bang message will bring up the appropriate dialogue window so that

the user can select the file from the hard drive, while a message containing the name of

a file itself will load that file into the buffer. If you would like to use a 'buffer~' object that

is within your own patch, a message with the text 'setBuffer' followed by the name

associated with an instance of the 'buffer~' object will allow the abstraction to use it

instead of the internal buffer.

For those abstractions with a streaming input buffer, the user simply needs to

connect the signal that is to be processed to the leftmost input. Any signal may be used

including one from a live audio input. The internal buffer of the abstraction records the

input and simply loops itself while the processing is being performed. In addition to this,

the streaming abstractions have a second inlet from the left that allows the user to switch

buffer recording on and off as needed using values of 1 or 0. A short, 10-millisecond

fade is applied when switching on or off in order to prevent clicks due to signal

discontinuity that this switching may cause.

A Granular Toolkit for Cycling74's Max/MSP Wolek 10

All of the toolkit's abstractions have a common prefix of 'gran' to help the user

identify them. Those with a static buffer are given the suffix of 'file', while those with a

continuous streaming buffer are given a suffix of 'live'. These naming conventions

should help the user to identify common effects, while separating the different forms of

buffer sampling provided for each processing effect.

Each effect abstraction has several control parameters that can be changed in

real-time to affect the processing output. By double-clicking on an instance of a specific

abstraction, a window will be opened that can be used as a control interface for the

effect. It uses standard Max/MSP interface items, such as number boxes and drop

down menus, to provide the user with basic abilities to affect the processing output.

Within the interface, effort has been made to place similar parameters next to each other

and in common locations between the different interfaces. This should help the user

quickly become familiar with the interface elements in a single abstraction and translate

that knowledge easily to the other abstractions.

In addition to the provided interface, the abstractions offer a fairly simple method

for creating custom interfaces and control mechanisms. The rightmost inlet and outlet

are used to manage changes in the numerous control parameters through messages

exchanged with the parent patch. All changes to the control parameters are output from

the outlet in a consistent message format with the name of the parameter followed by its

new value. For example, if a message were output reading "pitch_mult 1.2" would mean

that the pitch multiplier had been changed to a value of 1.2. Similar messages can also

be sent to the corresponding inlet in order to change the parameter setting. Again in the

previous example, if a message were sent reading "pitch_mult 1.0" to the rightmost inlet

it would change the value for the pitch multiplier to 1.0. Using the 'route' and 'prepend'

objects from the standard Max distribution, it is quite simple to create a custom interface

that communicates with the abstraction. It is important to note that changes made

A Granular Toolkit for Cycling74's Max/MSP Wolek 11

through the inlet are also echoed to the rightmost outlet and so the user must protect

against creating infinite loops when creating custom interfaces.

Any additional outlet found on a given abstraction is used to output a granular

signal for either playback or further processing. Most of the abstractions produce only a

single, mono signal. All abstractions accept only mono signals as input, either in as

single connection for the streaming buffer effects or a mono sound file for the static

buffer effects. A few of the effect abstractions produce stereo output and one type

produces eight individual streams at varied phases. The names of these abstractions

and a brief description of their processing effect follows. Included in the descriptions are

any reference to readings on the specific type of granular synthesis used and the

processor load of the abstraction. Processor utilization was monitored using the DSP

status window in Max/MSP running on an iBook G3 clocked at 500 MHz. A change in

the control parameters can affect the amount of processing the abstraction uses and so

the figures stated here are only approximates using mostly default settings.

gran.ASstream.file~ & gran.ASstream.live~ (5-6% CPU utilization) – These are

perhaps the simplest of the abstractions. Using their respective form of sampling input,

both produce a single stream of grains based on the concept of asynchronous granular

synthesis (Roads 1991). These abstractions use very little processor time but also have

minimal control parameters affecting the sound.

gran.pitch.file~ & gran.pitch.live~ (16-17% CPU utilization) – The pitch

abstractions use eight voices of granular synthesis with evenly spaced phases to

maintain an even re-synthesis of the sampled sound. Using a single pitch multiplier, the

user can transpose the pitch height of an input, which in the case of live sources can be

used to produce harmonies.

gran.chord.file~ & gran.chord.live~ (16-18% CPU utilization) – Similar

construction to the above "pitch" abstractions with the added ability to specify a list of

A Granular Toolkit for Cycling74's Max/MSP Wolek 12

pitch multipliers. Individual grains are then transposed to selected intervals within the

given list. The end result sounds like a chord based on the list of multipliers.

gran.groove.file~ (15-16% CPU utilization) – This abstraction is meant to mimic

the behavior of the 'groove~' object which is included with Max/MSP. However, since

this abstraction uses granular processing to loop the sound file, the speed and pitch can

be manipulated independently. This effect does not have a streaming buffer version

because its time compression and expansion capabilities require that the input sample

be static. It uses the same phase-related grain streams as previously discussed in order

to create an even re-synthesis.

gran.space2.file~ & gran.space2.live~ (19-20% CPU utilization) – Based on the

"pitch" effect, this abstraction places the individual streams at specific panning locations

across the stereo spectrum. These streams are numbered one to eight from left to right

and can be turned on or off in order to create different spatial effects.

gran.space8.file~ & gran.space8.live~ (18-19% CPU utilization) – The same

concept as the above "space2" effect with the difference that the individual streams are

output from different outlets. This gives the user the ability to process the streams

separately or distribute them within a multi-channel audio output system.

gran.cloud.file~ & gran.cloud.live~ (19-20% CPU utilization) – These use the

model of asynchronous granular synthesis with an element of random deviation from

basic control parameters to produce thick "cloud" textures (Roads 1991). These

abstractions provides more parameters than the others described in this paper and are

far more processor intensive at higher granular frequencies.

ABSTRACTION CONTROL PARAMETERS

Many of the effect abstractions have common names for parameters that are the

same or operate in a highly similar fashion. Rather than explain them in the context of

A Granular Toolkit for Cycling74's Max/MSP Wolek 13

the individual abstractions, the following section provides a common reference for the

different parameter names and a brief explanation of what is controlled by each. The

shortened names are the labels used in the control interface that is displayed when the

user double-clicks on a given abstraction instance. These are also the names used by

the inlet and outlet that handle messages for custom control of the parameters.

samp_offset – Sample offset. In abstractions that use a static buffer, this

parameter is used to define the number of milliseconds from the beginning of the buffer

to begin sampling from for grain production. It is not available in the streaming buffer

abstractions because the sampling position always follows the recording position within

the buffer.

buf_size – Buffer size. Used by streaming buffer abstractions in order to define

the length of the buffer used for sampling the input signal in number of milliseconds.

speed – Only available in the "gran.groove.file~" abstraction. Used to control the

speed of playback for the sampled sound upon re-synthesis. For example, a value of

1.0 equivalent is to normal playback speed, 0.5 equals half speed, and 2.0 equals

double speed.

offset_bw – Offset bandwidth. Defines the number of milliseconds that the

sampling position may randomly deviate from itself. The bandwidth represents the total

possible deviation in both the positive and negative direction combined. The maximum

deviation possible in either single direction is one half of the value specified.

freq – Frequency. For some abstractions, specifies the number of grains per

seconds produced in Hertz. This is equivalent to the inverse of the time between grain

onsets expressed in seconds. It is preferred over a simple length parameter when the

length is being varied in some manner that results in it not being equivalent to the time of

the next grain onset, as is the case with asynchronous granular synthesis.

A Granular Toolkit for Cycling74's Max/MSP Wolek 14

freq_bw – Frequency bandwidth. Defines as a percentage the maximum amount

of random deviation allowed for the frequency parameter. The percentage is used to

derive the actual deviation in Hertz using the frequency parameter value. The use of a

percentage ensures that the bandwidth is perceived consistently across the frequency

spectrum. Again the bandwidth is the total deviation possible with both the positive and

negative directions combined.

length – The length of grains to be produced in milliseconds. Lengths for granular

processing are typically limited to a range of 10 to 100 milliseconds and are most often

in the 40 to 50 millisecond range.

length_max – Maximum length. Expressed as a percentage of the inverse of the

frequency, this parameter allows the grains to overlap one another producing a thicker

texture. At 100 percent, no overlap should occur because the length would equal the

inverse frequency.

length_min – Minimum length. Another percentage of the inverse frequency that

allows the grains to be shortened, creating short delays between grains. The actual

length of individual grains fluctuates randomly between the maximum and minimum

length.

winShape – Grain windowing function. Allows the user to choose from a

selection of common windowing functions to be applied to the samples retrieved from

the buffer. Different shapes have different effects on the frequency spectrum produced

by the grains. For a more thorough discussion of window functions see Roads' The

Computer Music Tutorial (Roads 1996).

pitch_mult – Pitch multiplier. Used to raise or lower the perceived pitch of the

grains. It is actually used to control the sampling increment of the sound buffer, but the

aural result is in the form of a pitch manipulation. For most samples, a setting of 1.0

would be normal playback, 2.0 an octave higher and 0.5 an octave lower.

A Granular Toolkit for Cycling74's Max/MSP Wolek 15

pitch_bw – Pitch multiplier bandwidth. Provides the bandwidth for a random

deviation from the specified pitch multiplier expressed as a percentage of that value.

Again the use of a percentage gives the bandwidth a consistent aural width across the

frequency spectrum.

stream_config – Stream configuration. Used in the "space" effects, this

parameter allows the user to turn the individual streams of granular sampling on or off.

The related message has a somewhat different format from those for other parameters.

It must have the parameter name followed by the stream number and a 1 or 0 to change

the stream's state. For example, a message reading "stream_config 4 0" would turn

stream four off, while "stream_config 4 1" would turn it on again.

gain – Provides a basic gain control over the granular output. Expressed in

decibels, a value of 0.0 dB would multiply the output by 1.0 while a value of –76.0 dB

would multiply the signal by 0.0.

gain_bw – Gain bandwidth. Controls the bandwidth of the random deviation from

the specified gain parameter. The value is expressed in decibels and allows the

individual grains to have varied gains.

pan_min – Minimum panning position. It is used only in the "cloud" abstractions

in which individual grains are randomly panned across the stereo spectrum. This control

gives the user the ability to limit the width of the random panning. The value is

expressed as a floating point number from 0.0 to 1.0, with 0.0 representing hard left and

1.0 representing hard right.

pan_max – Maximum panning position. Used in connection with "pan_min" in

order to limit the area of the stereo spectrum in which the random panning can occur.

A Granular Toolkit for Cycling74's Max/MSP Wolek 16

CONCLUSION

With its externals and abstractions, this granular toolkit should appeal to both the

novice and expert user of Cycling74's Max/MSP. Novices will find useful effects built to

be easily incorporated into their own work. Experts will find useful tools that allow them

to freely experiment with the possibilities of granular synthesis at various levels of

precision. Both should be pleased with the efficiency and flexibility that the granular

toolkit offers to all.

This toolkit is freely available for download from the author's web site at the

following address: "http://www.nathanwolek.com" Follow the menu link to the software

section in order to download a compressed version of the files. The user must follow the

included instructions on where to place the files on the hard drive. A working copy of

Cycling74's Max/MSP must be present in order to use the toolkit.

ACKNOWLEDGEMENTS

This toolkit began as part of the development for several projects on which I

worked as programmer. They include Amnon Wolman's Thomas and Beulah, Paul

Hertz's Fool's Paradise and the Northwestern Center for Art and Technology's Portal

Project. I would like to sincerely thank the artists involved in those projects for pushing

me to develop the ideas that evolved into this toolkit. Additional support this research

was provided by a grant from the Northwestern University Graduate School.

A Granular Toolkit for Cycling74's Max/MSP Wolek 17

REFERENCES

Cycling74. 2001. Max 4: Getting Started. Online. Available:
http://www.synthesisters.com/download/Max4GettingStarted.pdf. 1 March 2002.

Dattorro, Jon. 1997. "Effect Design, Part 2: Delay-Line Modulation and Chorus."
Journal of the Audio Engineering Society 45 (10): 764-788.

Gabor, Dennis. 1947. "Acoustical Quanta and the Theory of Hearing." Nature 159
(4044): 591-594.

Jones, Douglas L. and Parks, Thomas W. 1988. "Generation and Combination of
Grains of Sound." Computer Music Journal 12 (2): 27-33.

Lippe, Cort. 1994. "Real-Time Granular Sampling Using the IRCAM Signal Processing
Workstation." Contemporary Music Review, Vol. 10, United Kingdom, Harwood
Academic Publishers, pp. 149-155.

Roads, Curtis. 1978. "Automated Granular Synthesis of Sound." Computer Music
Journal 2 (2): 61-62.

Roads, Curtis. 1991. "Asynchronous granular synthesis." In G. DePoli, A, Piccialli, and
C. Roads, eds. Representations of Musical Signals. Cambridge, Massachusetts: MIT
Press, pp. 143-186.

Roads, Curtis. 1996. "Granular Synthesis." In The Computer Music Tutorial.
Cambridge, Massachusetts: MIT Press, pp. 168-184.

Truax, Barry. 1988. "Real-Time Granular Synthesis with a Digital Signal Processing
Computer." Computer Music Journal 12 (2): 14-26.

Truax, Barry. 1990. "Time-Shifting of Sampled Sound with a Real-Time Granulation
Technique." Proceedings of the 1990 International Computer Music Conference. San
Francisco: International Computer Music Association, pp. 104-107.

Xenakis, Iannis. 1971. Formalized Music. Bloomington: Indiana University Press.

